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Abstract

Acute renal failure occurring in patients with obstructive jaundice after 
surgery is still a serious clinical complication. Renin-angiotensin-aldosterone 
system (RAAS) plays a key role in the progression of kidney disease. Previous 
studies have demonstrated that angiotensin-converting-enzyme-2 (ACE2), a 
component of the RAAS system, acts as a local regulator for renal protection, 
and has a beneficial effect on renal fibrosis. This review will summarize the role 
of ACE2 and the protective effects on renal dysfunction in obstructive jaundice.

Introduction
Obstructive jaundice is a common clinical manifestation in 

hepatobiliary surgery. The pathophysiological changes in obstructive 
jaundice remain to be complex. Hyperbilirubinemia in patients with 
obstructive jaundice induces various clinical complications and 
increased morbidity and mortality including acute renal failure and 
endotoxemia1,2.

Acute renal failure occurs in 8 to 10% of patients with obstructive 
jaundice. However, the mortality rate of this complication is 
reaching up to 70%−80%1. Accumulating evidences support that 
the increase of total bilirubin (Tbil) and serum creatinine (Scr) level 
in postoperative patients with obstructive jaundice relates to acute 
renal failure3,4. 

A correlation was suggested between endotoxins and the 
complications in patients with obstructive jaundice1,5. Released 
cytokines due to endotoxin cause renal vasoconstrictive effect, 
acute tubular necrosis, fibrin deposition and systemic inflammatory 
response, which impact the short-term outcome6. Impaired immune 
function caused by obstructive jaundice contributes to the release of 
inflammatory cytokine TNF-α, IL-1, IL-67.

The experimental animal model for obstructive jaundice is 
established by bile duct ligation (BDL)8. It has contributed to a 
better understanding of pathophysiology and the assessment of 
therapeutic strategy.

This review will explore the protective effects of RAAS (Renin-
angiotensin-aldosterone system) on renal dysfunction in obstructive 
jaundice.

The RAAS and Renin Inhibition
The RAAS has a crucial role in the regulation of blood pressure, 

fluid balance, and renal homeostasis9. Accumulating evidences have 
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shown that the progression of renal disease is associated 
with RAAS10,11. Independent regulation of the intrarenal 
RAAS and inappropriate activation of this system 
contributes to the development and maintenance of renal 
disease12. Blockade of the RAAS by renin inhibition is an 
effective way to prevent progressive renal dysfunction, 
manifesting as reduced blood pressure, kidney fibrosis and 
inflammation, but at high risk of renal disease13,14. 

The Role of ACEI/ARBs
Previous research mainly focused on the effect of 

angiotensin-converting enzyme inhibitor (ACEI) and 
angiotensin receptor blockers (ARBs) on renal function. 
ACEI prevents the conversion of Angiotensin I to 
Angiotensin II by inhibiting the angiotensin-converting 
enzyme and decreases aldosterone secretion. Mishina et 
al. reported that renal dysfunction was improved after 
benazepril (an ACEI) was administered, which showed 
a protective effect in preventing the progression of renal 
disease15. ARBs block the attachment of Angiotensin II to its 
receptor. Similar to ACEI, ARBs decreased blood pressure 
and albuminuria, produced renal protective effect16. And, 
ACEI and ARBs are all recommended for the treatment of 
diabetic nephropathy17.

The Role of ACE2 and Aldosterone
Angiotensin-converting enzyme 2 (ACE2) is an 

exopeptidase that catalyzes the conversion of angiotensin 
II to angiotensin-(1-7) and is expressed abundantly in 
the kidney. It was found to have an important regulatory 
role in RAAS and was demonstrated to be a therapeutic 
target in renal disease. Studies have demonstrated the 
interplay between ACE2 and the kidney under normal and 
pathological conditions and pointed out the crucial role of 
ACE2 plays in the modulation of renal injury18,19.  Clarke 
et al. concluded that the upregulation of ACE2 results in 
a significant protective effect on renal function in both 
diabetic patients and animal models20. Liu et al. studied 
the mechanisms of renoprotective role of ACE2 and 
demonstrated that enhanced Ang II-mediated TGF-β/Smad 
and NF-κB signaling may be the mechanisms by which loss 
of ACE2 enhances renal fibrosis and inflammation21.

Studies using type 2 diabetes models have shown that 
ACE2 expression increased at an early stage, and reduced 
in the kidney with diabetic nephropathy developing22. 
Similarly, the ACE2 expression is elevated in early and 
decreased in the late stage of diabetic nephropathy in type 
1 diabetes models23. Aldosterone is a steroid hormone 
produced by zona glomerulosa of the adrenal cortex in 
the adrenal gland. It is part of the RAAS and is related with 
the development and progression of the cardiovascular 
and renal disease. It was proved that aldosterone in the 
circulation indirectly promotes the development of renal 
diseases by inducing inflammation, fibrosis, and necrosis24. 

Mechanism studies of aldosterone-induced inflammation 
provided the rationale for an expanded therapeutic role for 
mineralocorticoid receptor antagonists and aldosterone 
synthase inhibitors25. Fukuda et al. suggested that 
aldosterone induces kidney injury via activation of NF-
κB and mineralocorticoid receptor, and decreased ACE2 
expression may play an important role in aldosterone-
induced kidney injury26. Animal experiments showed that 
aldosterone administration could reduce the expression of 
ACE2. Nevertheless, aldosterone antagonists could reverse 
the pathological changes27.

Aldosterone Antagonist: Spironolactone
Spironolactone, a non-selective aldosterone antagonist, 

is commonly used in clinical practice which interferes with 
RAAS. The administration of spironolactone could abolish 
the effect of aldosterone. 

de Sousa et al. showed that the treatment with 
spironolactone appears to be effective in controlling 
proteinuria and with a protective effect on renal fibrosis28. A 
meta-analysis evaluated the benefits and potential adverse 
effects of spironolactone on renoprotective treatment in 
patients with diabetic nephropathy and concluded that 
spironolactone could be used to prevent or slow diabetic 
nephropathy progression by reducing proteinuria29. 
Agrawal et al. concluded that ACEI and ARBs have been 
shown to suppress RAAS ineffectively, and they supported 
the use of spironolactone for more comprehensive 
suppression of the RAAS, which improved mortality 
outcomes in patients with chronic kidney disease30.

Some animal experiments related with spironolactone 
have been conducted. Zhou H et al. proved that 
spironolactone may prevent renal fibrosis by inhibiting 
the endothelial-mesenchymal transition in rats31. 
Jeewandara et al. showed that inhibition of aldosterone via 
spironolactone was able to retard both renal and cardiac 
disease progression in a rodent model of kidney disease32. 
Another study showed that spironolactone administration 
after mild ischemia may be a useful therapeutic strategy to 
prevent the detrimental effect on renal function33.

In our previous study, we found that down-regulation 
of the ACE2 expression in the kidney of the BDL group was 
significant. Interestingly, the ACE2 expression is negatively 
correlated with Scr/Tbil. Further investigation showed 
that spironolactone intervention could significantly 
improve the renal fibrosis induced by obstructive jaundice. 
We also discovered that the ACE2 expression of BDL group 
could be upregulated by spironolactone. It implied that 
spironolactone could induce feedback regulation of RAAS, 
thereby affecting the expression of ACE2 and improving 
the renal function8. Nevertheless, the mechanism that leads 
to the expression change of ACE2 in obstructive jaundice is 
unclear and needs further study.
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Summary 
In conclusion, the change of ACE2 expression was 

correlated with the renal dysfunction in obstructive 
jaundice. Spironolactone not only improved the progression 
of renal fibrosis but also upregulated ACE2 expression in 
the kidney of obstructive jaundice.
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